## SYNTHESIS OF 2-AMINOMETHYL DERIVATIVES OF DIHYDROTHIAZOLO[2,3-f]XANTHINE

## F. A. Khaliullin, Yu. V. Strokin, and V. A. Kataev

2-Aminomethyl derivatives of dihydrothiazolo[2,3-f]xanthine were obtained by the reaction of 8-halo-7-(2,3-epithiopropyl)xanthines with amines.

Methods for the synthesis of unsubstituted 2,3-dihydro-6,8-dimethylthiazolo[2,3-f]xanthine [1, 2] and 2-(7xanthinyl)methyl-substituted 2,3-dihydrothiazolo[2,3-f]xanthine [3] are known. We have developed a general method for the synthesis of 2-substituted dihydrothiazolo[2,3-f]xanthines by the reaction of 8-halo-7-(2,3-epithiopropyl)xanthines Ia, b with nucleophilic reagents. In the present communication we describe the production of 2-aminomethyl derivatives of dihydrothiazolo[2,3-f]xanthine derivatives IIa-i, which are of interest as potential biologically active compounds (see Tables 1 and 2).



la IIa-f  $R = CH_3$ . Ib. Ilg -- i R = H: IIa-c  $R^1 = H$ . d,  $q R^1 + R^2 = (CH_2)_2O(CH_2)_2$ . e,  $h R^1 = R^2 = C_2H_5$ , f, i,  $R^1 + R^2 = (CH_2)_6$ , a  $R^2 = CH_2C_6H_5$ , b  $R^2 = C(CH_3)_3$ , c  $R^2 = cyclo-hexyl$ : I a Hal = Br, b Hal = Cl

Compounds IIa-i were synthesized by heating thiiranes Ia, b with an excess (1:3-10 moles) of the amines in alcohol. The reaction probably proceeds through nucleophilic opening of the thiirane ring attached to the most hydrogenated carbon atom to give a thiolate anion, which replaces the halogen atom intramolecularly. The absence of the polymeric transformations that are characteristic for the reaction of thiiranes with amines [4] constitutes evidence for the effective stabilization of the thiolate anion.

Singlets of xanthine N-methyl groups and signals of protons of residues of the corresponding amines are present in the PMR spectra of IIa-e, h, i. The protons of a dihydrothiazole ring are recorded in the form of a multiplet at 4.1-4.8 ppm, the complexity of which is due to the magnetic nonequivalence of the ring methylene protons. The PMR spectra of IIb-e in CDCl<sub>3</sub> contain signals of protons of a 2-CH<sub>2</sub>N group in the form of a doublet with spin-spin coupling constant (SSCC) <sup>3</sup>J ~ 7 Hz (for IId, e) or in the form of two AB systems with SSCC <sup>2</sup>J ~ 10 Hz (for IIb, c). In the PMR spectra of IIa, h, i in CF<sub>3</sub>COOH the signal of the protons of the 2-CH<sub>2</sub>N group is shifted ~0.5 ppm to the weak-field region and is recorded in the form of a multiplet; this is explained by protonation of the nitrogen atom of the aminomethyl group and retardation of the exchange of NH protons in acidic media [5].

In the <sup>13</sup>C NMR spectra of IIe-g the carbon atoms of the dihydrothiazole ring are recorded in the form of a triple  $[C_{(3)}]$  and a doublet  $[C_{(2)}]$  at 49-50 and 51-54 ppm, respectively.

## **EXPERIMENTAL**

The PMR spectra of solutions of the compounds in  $CDCl_3$  were recorded with a Tesla BS-567 spectrometer (100 MHz) with hexamethyldisiloxane (HMDS) as the internal standard, while the <sup>13</sup>C NMR spectra were obtained with a Jeol FX spectrometer (22.4 MHz) with tetramethylsilane (TMS) as the internal standard. The individuality of the compounds was monitored by TLC on Silufol UV-254 plates in an n-butanol—acetic acid—water (4:1:2) system with development by iodine vapors.

Fifteenth Anniversary of the All-Union Lenin Young Communist League Bashkir State Medical Institute, Ufa 450000. Translated from Khimiya Geterotsiklicheskikh Soedinenii, No. 6, pp. 840-842, June, 1991. Original article submitted August 10, 1989; revision submitted October 22, 1990.

| Yield,<br>%                 |                  | 89<br>89<br>78<br>81<br>81<br>78<br>65<br>65                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|-----------------------------|------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 6. ppm <sup>st</sup>        | other protons    | 7.00 (5H, brs, 5CH arom)<br>1.00 (9H, s, 3CCH <sub>3</sub> )<br>0.84. 1.40 (6H, m, 3CCH <sub>3</sub> ); 1.40. 1.96 (4H, m, 2CCH <sub>2</sub> ); 2.20. 2.52<br>(1H, m, NCH)<br>2.51 (4H, m, N(CH <sub>3</sub> ) <sub>2</sub> ); 3.70 (4H, m, O(CH <sub>3</sub> ) <sub>3</sub> )<br>1.05 (6H, t, 2CCH <sub>3</sub> ); 2.62 (4H, q, N(CH <sub>2</sub> ) <sub>2</sub> )<br>1.04 (6H, t, 2CCH <sub>3</sub> ); 2.87. 3.20 (4H, m, N(CH <sub>3</sub> ) <sub>2</sub> )<br>1.04 (6H, t, 2CCH <sub>3</sub> ); 2.87. 3.20 (4H, m, N(CH <sub>3</sub> ) <sub>2</sub> )<br>1.26. 1.70 (8H, m, 4CCH <sub>2</sub> ); 3.20. 3.64 (6H, m, N(CH <sub>2</sub> ) <sub>2</sub> and 2.CH <sub>2</sub> N) |
| PMR spectrum,               | 2-Н and<br>3-Н.m | 3.94 4.80**   4.10 4.64   4.10 4.64   4.18 4.80   4.14 4.82   4.12 4.84                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                             | 2-CH,N           | 3,25 3,62<br>2,74 3,08<br>2,76 3,12<br>2,76<br>2,87<br>2,87<br>2,87<br>3,30 3,52                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                             | 8-CH, S          | 3,25<br>3,36<br>3,42<br>3,45<br>3,20<br>3,20<br>3,20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                             | 6-CH., S         | 3.208<br>3.208<br>3.334<br>3.334<br>3.308                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| mp, °C<br>(from<br>ethanol) |                  | 148149<br>179180<br>171172<br>213215<br>175177<br>172174<br>192194<br>192194<br>192208                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Empirical<br>formula        |                  | C <sub>1</sub> ,H <sub>19</sub> N <sub>5</sub> O <sub>2</sub> S<br>C <sub>16</sub> H <sub>21</sub> N <sub>5</sub> O <sub>2</sub> S<br>C <sub>16</sub> H <sub>19</sub> N <sub>5</sub> O <sub>2</sub> S<br>C <sub>16</sub> H <sub>19</sub> N <sub>5</sub> O <sub>2</sub> S<br>C <sub>16</sub> H <sub>19</sub> N <sub>5</sub> O <sub>2</sub> S<br>C <sub>15</sub> H <sub>21</sub> N <sub>5</sub> O <sub>2</sub> S                                                           |
| bnuoqmo                     |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |

TABLE 1. Characteristics of the Synthesized Ila-i

\*The spectra of IIb-e were recorded in CDCl<sub>3</sub>, while the spectra of IIa, h, i were recorded in  $CF_3COOH$ . \*\*The signals of the protons of the dihydrothiazole ring are overlapped with the signals of the NCH<sub>2</sub> protons, forming a multiplet with an intensity of 5H. \*\*\*The signals of the 2-CH<sub>2</sub>N protons are overlapped with the signals of the N(CH<sub>2</sub>)<sub>2</sub> protons.

TABLE 2. <sup>13</sup>C NMR Spectra of IIe-f

| Com-<br>pound | Chemical shifts, δ, ppm                  |                                         |                         |                         |                |                                                                                                                                                                                |  |  |
|---------------|------------------------------------------|-----------------------------------------|-------------------------|-------------------------|----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
|               | N <sub>(6)</sub> —CH <sub>3</sub> .<br>q | N <sub>(8)</sub> CH <sub>5</sub> .<br>q | c <sub>(3)</sub> ,<br>t | c <sub>(2)</sub> ,<br>d | 2-CH2N,<br>t   | other carbon atoms*                                                                                                                                                            |  |  |
| lle           | 27,83<br>27,78                           | <b>29</b> ,82<br>29,78                  | 49,50<br>49,28          | 5 <b>3,4</b> 4<br>53,62 | 56,82<br>60,98 | 12,01 (q, 2CCH <sub>3</sub> ); 47,38 (t, N(CH <sub>2</sub> ) <sub>2</sub> )<br>29,96 (t, 2CCH <sub>2</sub> ); 28,48 (t, 2CCH <sub>2</sub> );<br>55.48 (t, N(CH <sub>2</sub> )) |  |  |
| IIg           | —                                        | 29,18                                   | 49,61                   | 51,37                   | 61,69          | 53,69 (t, N(CH <sub>2</sub> ) <sub>2</sub> ); 66,65 (t, O(CH <sub>2</sub> ) <sub>2</sub> );                                                                                    |  |  |

\*The singlets of the carbon atoms of the xanthine ring are not presented in the table.

The results of elementary analysis for C, H, N, and S were in agreement with the calculated values.

2-Aminomethyl Derivatives (IIa-i) of 2,3-Dihydrothiazolo[2,3f]xanthine. A. The corresponding amine (30 mmole) was added to a solution of 3.31 g (10 mmole) of 8-bromo-1,3-dimethyl-7-(2,3-epithiopropyl)xanthine (Ia) in 50 ml of ethanol, and the mixture was refluxed for 3 h. It was then cooled, and the resulting precipitate was removed by filtration, washed with 20 ml of ethanol and water, and dried. This method was used to obtain IIa-d.

B. The corresponding amine (30 mmole) was added to a solution of 2.73 g (10 mmole) of 3-methyl-8-chloro-7-(2,3-epithiopropyl)xanthine (Ib) in 100 ml of isobutyl alcohol, after which the mixture was refluxed for 5 h and worked up as in method A. This procedure was used to obtain IIf, g, i.

C. A 10.4-ml (100 mmole) sample of diethylamine was added to a solution of 10 mmole of thiirane Ia or Ib in 75 ml of ethanol, and the mixture was heated for 5 h in a steel autoclave at 120°C. The mixture was then worked up as in method A. This method was used to obtain IIe, h.

## LITERATURE CITED

- 1. F. Cacace and R. Masironi, Ann. Chim. (Roma), 46, 806 (1956).
- B. V. Kurmaz, V. A. Grin', M. I. Yurchenko, V. I. Kalaida, V. A. Shumeiko, and P. M. Kochergin, Summaries of Papers Presented at the 2nd Conference of Pharmacists of the Ukrainian SSR on Current Problems of Pharmaceutical Science and Practice [in Russian], Kiev (1972), p. 393.
- 3. Yu. V. Strokin and F. A. Khaliullin, Khim. Geterotsikl. Soedin., No. 9, 1284 (1988).
- 4. A. V. Fokin and A. F. Kolomiets, The Chemistry of Thiiranes [in Russian], Nauka, Moscow (1978).
- 5. B. I. Ionin, B. A. Ershov, and A. I. Kol'tsov, NMR Spectroscopy in Organic Chemistry [in Russian], Khimiya, Leningrad (1983).